__sparc_utrap_install man page on SunOS

Man page or keyword search:  
man Server   20652 pages
apropos Keyword Search (all sections)
Output format
SunOS logo
[printable version]

__sparc_utrap_install(2)	 System Calls	      __sparc_utrap_install(2)

NAME
       __sparc_utrap_install - install a SPARC V9 user trap handler

SYNOPSIS
       #include <sys/utrap.h>

       int  __sparc_utrap_install(utrap_entry_t type, utrap_handler_t new_pre‐
       cise,  utrap_handler_t  new_deferred,   utrap_handler_t	 *old_precise,
       utrap_handler_t *old_deferred);

DESCRIPTION
       The   __sparc_utrap_install()   function	 establishes  new_precise  and
       new_deferred user trap handlers as the new  values  for	the  specified
       type  and returns the existing user trap handler values in *old_precise
       and *old_deferred in a single atomic operation. A new  handler  address
       of  NULL	 means	no  user handler of that type will be installed. A new
       handler address of UTH_NOCHANGE means that the user  handler  for  that
       type  should  not be changed. An old handler pointer of NULL means that
       the user is not interested in the old handler address.

       A precise trap is caused by a specific instruction  and	occurs	before
       any  program-visible state has been changed by this instruction. When a
       precise trap occurs, the program counter (PC) saved in the Trap Program
       Counter (TPC) register points to the instruction that induced the trap;
       all instructions prior to this trapping instruction have been executed.
       The  next  program counter (nPC) saved in the Trap Next Program Counter
       (TnPC) register points to the next instruction following	 the  trapping
       instruction,  which has not yet been executed.  A deferred trap is also
       caused by a particular  instruction,  but  unlike  a  precise  trap,  a
       deferred	 trap  may  occur  after  the  program-visible	state has been
       changed.	 See the SPARC Architecture  Manual,  Version  9  for  further
       information on precise and deferred traps.

       The  list  that follows contains hardware traps and their corresponding
       user trap types. User trap  types  marked  with	a  plus-sign  (+)  are
       required	 and  must  be provided by all ABI-conforming implementations.
       The others may not be present on every implementation;  an  attempt  to
       install	a  user	 trap handler for those conditions will return EINVAL.
       User trap types marked with an asterisk (*) are implemented as  precise
       traps only.

       ┌─────────────────────────────┬───────────────────────────────┐
       │	 Trap Name	     │User Trap Type (utrap_entry_t) │
       ├─────────────────────────────┼───────────────────────────────┤
       │illegal_instruction	     │UT_ILLTRAP_INSTRUCTION  +*  or │
       │			     │UT_ILLEGAL_INSTRUCTION	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │fp_disabled		     │UT_FP_DISABLED +*		     │
       ├─────────────────────────────┼───────────────────────────────┤
       │fp_exception_ieee_754	     │UT_FP_EXCEPTION_IEEE_754 +     │
       ├─────────────────────────────┼───────────────────────────────┤
       │fp_exception_other	     │UT_FP_EXCEPTION_OTHER	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │tag_overflow		     │UT_TAG_OVERFLOW +*	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │division_by_zero	     │UT_DIVISION_BY_ZERO +	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │mem_address_not_aligned	     │UT_MEM_ADDRESS_NOT_ALIGNED +   │
       ├─────────────────────────────┼───────────────────────────────┤
       │privileged_action	     │UT_PRIVILEGED_ACTION +	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │privileged_opcode	     │UT_PRIVILEGED_OPCODE	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │async_data_error	     │UT_ASYNC_DATA_ERROR	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │trap_instruction	     │UT_TRAP_INSTRUCTION_16 through │
       │			     │UT_TRAP_INSTRUCTION_31 +*	     │
       ├─────────────────────────────┼───────────────────────────────┤
       │instruction_access_excep‐    │UT_INSTRUCTION_EXCEPTION	  or │
       │tion		   instruc‐  │UT_INSTRUCTION_PROTECTION	  or │
       │tion_access_MMU_miss	     │UT_INSTRUCTION_ERROR	     │
       │instruction_access_error     │				     │
       ├─────────────────────────────┼───────────────────────────────┤
       │data_access_exception	     │UT_DATA_EXCEPTION		  or │
       │data_access_MMU_miss	     │UT_DATA_PROTECTION	  or │
       │data_access_error	     │UT_DATA_ERROR		     │
       │data_access_protection	     │				     │
       └─────────────────────────────┴───────────────────────────────┘

       The  following explanations are provided for those user trap types that
       are not self-explanatory.

       UT_ILLTRAP_INSTRUCTION

	   This trap is raised by user execution of the	 ILLTRAP  INSTRUCTION.
	   It is always precise.

       UT_ILLEGAL_INSTRUCTION

	   This	 trap  will  be raised by the execution of otherwise undefined
	   opcodes. It is implementation-dependent as to  what	opcodes	 raise
	   this	 trap;	the  ABI only specifies the interface. The trap may be
	   precise or deferred.

       UT_PRIVILEGED_OPCODE

	   All opcodes declared to be privileged in SPARC V9 will  raise  this
	   trap.  It  is  implementation-dependent  whether other opcodes will
	   raise it as well; the ABI only specifies the interface.

       UT_DATA_EXCEPTION, UT_INSTRUCTION_EXCEPTION

	   No valid user mapping can be made to this address, for  a  data  or
	   instruction access, respectively.

       UT_DATA_PROTECTION, UT_INSTRUCTION_PROTECTION

	   A  valid  mapping  exists, and user privilege to it exists, but the
	   type of access (read, write, or execute) is denied, for a  data  or
	   instruction access, respectively.

       UT_DATA_ERROR, UT_INSTRUCTION_ERROR

	   A  valid  mapping  exists,  and both user privilege and the type of
	   access are allowed, but an unrecoverable error occurred in attempt‐
	   ing the access, for a data or instruction access, respectively. %l1
	   will contain either BUS_ADDRERR or BUS_OBJERR.

       UT_FP_DISABLED

	   This trap is raised when an application  issues  a  floating	 point
	   instruction	(including  load  or  store) and the SPARC V9 Floating
	   Point Registers State (FPRS) FEF bit is 0. If  a  user  handler  is
	   installed  for  this	 trap, it will be given control. Otherwise the
	   system will set FEF to one and retry the instruction.

       For all traps, the handler executes in a new register window, where the
       in  registers  are the out registers of the previous frame and have the
       value they contained at the time of the trap, similar to a normal  sub‐
       routine	call after the save instruction. The global registers (includ‐
       ing the special registers %ccr, %asi, and %y)  and  the	floating-point
       registers  have	their  values  from  the  time	of the trap. The stack
       pointer register %sp plus the BIAS will	point  to  a  properly-aligned
       128-byte	 register  save	 area;	if the handler needs scratch space, it
       should decrement the stack pointer to obtain it. If the	handler	 needs
       access  to  the	previous  frame's  in registers or local registers, it
       should execute a FLUSHW instruction, and then access them  off  of  the
       frame pointer. If the handler calls an ABI-conforming function, it must
       set the %asi register to ASI_PRIMARY_NOFAULT before the call.

       On entry to a precise user trap handler	%l6 contains the %pc  and  %l7
       contains	 the  %npc  at the time of the trap.  To return from a handler
       and reexecute the trapped instruction, the handler would execute:

       jmpl %l6, %g0 ! Trapped PC supplied to user trap handler
       return %l7    ! Trapped nPC supplied to user trap handler

       To return from a handler and skip the trapped instruction, the  handler
       would execute:

       jmpl %l7, %g0 ! Trapped nPC supplied to user trap handler
       return %l7 + 4 ! Trapped nPC + 4

       On  entry  to  a	 deferred trap handler %o0 contains the address of the
       instruction that caused the trap and %o1 contains the  actual  instruc‐
       tion (right-justified, zero-extended), if the information is available.
       Otherwise %o0 contains the value −1 and %o1 is  undefined.   Additional
       information  may be made available for certain cases of deferred traps,
       as indicated in the following table.

       ┌──────────────────────────┬───────────────────────────────────────┐
       │      Instructions	  │	   Additional Information	  │
       ├──────────────────────────┼───────────────────────────────────────┤
       │LD-type (LDSTUB)	  │ %o2 contains  the  effective  address │
       │			  │ (rs1 + rs2 | simm13).		  │
       ├──────────────────────────┼───────────────────────────────────────┤
       │ST-type (CAS, SWAP)	  │ %o2	 contains the effective address ( │
       │			  │ rs1 + rs2 |simm13).			  │
       ├──────────────────────────┼───────────────────────────────────────┤
       │Integer arithmetic	  │ %o2 contains the rs1 value.	 %o3 con‐ │
       │			  │ tains  the	rs2  | simm13 value.  %o4 │
       │			  │ contains the contents of the %y  reg‐ │
       │			  │ ister.				  │
       ├──────────────────────────┼───────────────────────────────────────┤
       │Floating-point arithmetic │ %o2	  contains  the	 address  of  rs1 │
       │			  │ value.  %o3 contains the  address  of │
       │			  │ rs2 value.				  │
       ├──────────────────────────┼───────────────────────────────────────┤
       │Control-transfer	  │ %o2	 contains the target address (rs1 │
       │			  │ + rs2 | simm13).			  │
       ├──────────────────────────┼───────────────────────────────────────┤
       │Asynchronous data errors  │ %o2 contains the address that  caused │
       │			  │ the	 error.	  %o3 contains the effec‐ │
       │			  │ tive ASI, if available, else −1.	  │
       └──────────────────────────┴───────────────────────────────────────┘

       To return from a deferred trap, the trap handler issues:

	      ta    68	  ! ST_RETURN_FROM_DEFERRED_TRAP

       The following pseudo-code explains how the operating system  dispatches
       traps:

       if (precise trap) {
	     if (precise_handler) {
		  invoke(precise_handler);
		  /* not reached */
	     } else {
		  convert_to_signal(precise_trap);
	     }
	} else if (deferred_trap) {
	     invoke(deferred_handler);
		  /* not reached */
	     } else {
		  convert_to_signal(deferred_trap);
	     }
	}
	if (signal)
		  send(signal);

       User  trap  handlers  must  preserve  all  registers  except the locals
       (%l0-7) and the outs (%o0-7), that is,  %i0-7,  %g1-7,  %d0-d62,	 %asi,
       %fsr, %fprs, %ccr, and %y, except to the extent that modifying the reg‐
       isters is part of the desired functionality of the handler.  For	 exam‐
       ple, the handler for UT_FP_DISABLED may load floating-point registers.

RETURN VALUES
       Upon  successful completion, 0 is returned. Otherwise, a non-zero value
       is returned and errno is set to indicate the error.

ERRORS
       The __sparc_utrap_install() function will fail if:

       EINVAL	       The type argument is not a supported  user  trap	 type;
		       the  new user trap handler address is not word aligned;
		       the old user trap handler address cannot	 be  returned;
		       or the user program is not a 64-bit executable.

EXAMPLES
       Example 1: A sample program using the __sparc_utrap_install() function.

       The  __sparc_utrap_install() function is normally used by user programs
       that wish to provide their own tailored exception handlers as a	faster
       alternative  to	signal(3C),  or	 to  handle  exceptions	 that  are not
       directly supported by the signal() interface, such as fp_disabled.

       extern void *fpdis_trap_handler();
       utrap_handler_t new_precise = (utrap_handler_t)fpdis_trap_handler;
       double d;
       int err;
       err = __sparc_utrap_install(UT_FP_DISABLED, new_precise,
	   UTH_NOCHANGE, NULL, NULL);
       if (err == EINVAL) {
	       /* unexpected error, do something */
	       exit (1);
       }
       d = 1.0e-300;
       ENTRY(fpdis_trap_handler)
       wr      %g0, FPRS_FEF, %fprs
       jmpl    %l6, %g0
       return  %l7
       SET_SIZE(fpdis_trap_handler)

       This example turns on bit 2, FEF, in the Floating-Point Registers State
       (FPRS)  Register,  after a floating-point instruction causes an fp_dis‐
       abled trap. (Note that this example simulates part of the default  sys‐
       tem  behavior;  programs do not need such a handler. The example is for
       illustrative purposes only.)

ATTRIBUTES
       See attributes(5) for descriptions of the following attributes:

       ┌─────────────────────────────┬─────────────────────────────┐
       │      ATTRIBUTE TYPE	     │	    ATTRIBUTE VALUE	   │
       ├─────────────────────────────┼─────────────────────────────┤
       │MT-Level		     │MT-Safe			   │
       └─────────────────────────────┴─────────────────────────────┘

SEE ALSO
       signal(3C), attributes(5)

       SPARC Architecture Manual, Version 9

       Manufacturer's processor chip user manuals

NOTES
       The Exceptions and Interrupt Descriptions section of the SPARC V9  man‐
       ual  documents  which  hardware	traps  are  mandatory or optional, and
       whether they can be implemented as precise or deferred traps, or	 both.
       The  manufacturer's processor chip user manuals describe the details of
       the traps supported for the specific processor implementation.

SunOS 5.10			  11 Nov 1997	      __sparc_utrap_install(2)
[top]

List of man pages available for SunOS

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net