mlib_SignalDTWKVector_F32 man page on SunOS

Man page or keyword search:  
man Server   20652 pages
apropos Keyword Search (all sections)
Output format
SunOS logo
[printable version]

mlib_SignalDTWKVector_F32(mediaLib Library Funmlib_SignalDTWKVector_F32(3MLIB)

NAME
       mlib_SignalDTWKVector_F32  -  perform  dynamic  time warping for K-best
       paths on vector data

SYNOPSIS
       cc [ flag... ] file... -lmlib [ library... ]
       #include <mlib.h>

       mlib_status mlib_SignalDTWKVector_F32(mlib_d64 *dist,
	   const mlib_f32 **dobs, mlib_s32 lobs, void *state);

DESCRIPTION
       The mlib_SignalDTWKVector_F32() function performs dynamic time  warping
       for K-best paths on vector data.

       Assume the reference data are

	     r(y), y=1,2,...,N

       and the observed data are

	     o(x), x=1,2,...,M

       the dynamic time warping is to find a mapping function (a path)

	     p(i) = {px(i),py(i)}, i=1,2,...,Q

       with the minimum distance.

       In  K-best  paths  case,	 K  paths  with	 the  K	 minimum distances are
       searched.

       The distance of a path is defined as

		     Q
	    dist = SUM d(r(py(i)),o(px(i))) * m(px(i),py(i))
		   i=1

       where d(r,o) is the dissimilarity between data point/vector r and  data
       point/vector  o;	 m(x,y)	 is  the path weighting coefficient associated
       with path point (x,y); N is the length of the reference data; M is  the
       length of the observed data; Q is the length of the path.

       Using L1 norm (sum of absolute differences)

		      L-1
	    d(r,o) = SUM |r(i) - o(i)|
		     i=0

       Using L2 norm (Euclidean distance)

			     L-1
	    d(r,o) = SQRT { SUM (r(i) - o(i))**2 }
			    i=0

       where L is the length of each data vector.

       To scalar data where L=1, the two norms are the same.

	     d(r,o) = |r - o| = SQRT {(r - o)**2 }

       The constraints of dynamic time warping are:

	   1.	  Endpoint constraints

			px(1) = 1
		       1 ≤ py(1) ≤ 1 + delta

		  and

			px(Q) = M
		       N-delta ≤ py(Q) ≤ N

	   2.	  Monotonicity Conditions

			px(i) ≤ px(i+1)
		       py(i) ≤ py(i+1)

	   3.	  Local Continuity Constraints

		  See Table 4.5 on page 211 in Rabiner and Juang's book.

		  Itakura Type:

			py
		       |
		       *----*----*
		       |p4  |p1	 |p0
		       |    |	 |
		       *----*----*
		       |    |p2	 |
		       |    |	 |
		       *----*----*-- px
			     p3

		  Allowable paths are

			p1->p0	  (1,0)
		       p2->p0	 (1,1)
		       p3->p0	 (1,2)

		  Consecutive  (1,0)(1,0) is disallowed. So path p4->p1->p0 is
		  disallowed.

	   4.	  Global Path Constraints

		  Due to local continuity constraints, certain portions of the
		  (px,py) plane are excluded from the region the optimal warp‐
		  ing path can traverse. This forms global path constraints.

	   5.	  Slope Weighting

		  See Equation 4.150-3 on page	216  in	 Rabiner  and  Juang's
		  book.

       A  path in (px,py) plane can be represented in chain code. The value of
       the chain code is defined as following.

	     ============================
	    shift ( x , y ) | chain code
	    ----------------------------
		( 1 , 0 )   |	  0
		( 0 , 1 )   |	  1
		( 1 , 1 )   |	  2
		( 2 , 1 )   |	  3
		( 1 , 2 )   |	  4
		( 3 , 1 )   |	  5
		( 3 , 2 )   |	  6
		( 1 , 3 )   |	  7
		( 2 , 3 )   |	  8
	    ============================

		py
		|
		*  8  7	 *
		|
		*  4  *	 6
		|
		1  2  3	 5
		|
		x--0--*--*-- px

       where x marks the start point of a path segment, the  numbers  are  the
       values of the chain code for the segment that ends at the point.

       In  following example, the observed data with 11 data points are mapped
       into the reference data with 9 data points

		 py
		|
	     9	| * * * * * * * * * *-*
		|		   /
		| * * * * * * * *-* * *
		|	       /
		| * * * * * * * * * * *
		|	     /
		| * * * * *-* * * * * *
		|	 /
		| * * * * * * * * * * *
		|	|
		| * * * * * * * * * * *
		|      /
		| * * * * * * * * * * *
		|    /
		| * * * * * * * * * * *
		|  /
	     1	| * * * * * * * * * * *
		|
		+------------------------ px
		  1		      11

       The chain code that represents the path is

	     (2 2 2 1 2 0 2 2 0 2 0)

       See Fundamentals of Speech Recognition by Lawrence Rabiner  and	Biing-
       Hwang Juang, Prentice Hall, 1993.

PARAMETERS
       The function takes the following arguments:

       dist	The distances of the K-best paths.

       dobs	The observed data array.

       lobs	The length of the observed data array.

       state	Pointer to the internal state structure.

RETURN VALUES
       The  function  returns MLIB_SUCCESS if successful. Otherwise it returns
       MLIB_FAILURE.

ATTRIBUTES
       See attributes(5) for descriptions of the following attributes:

       ┌─────────────────────────────┬─────────────────────────────┐
       │      ATTRIBUTE TYPE	     │	    ATTRIBUTE VALUE	   │
       ├─────────────────────────────┼─────────────────────────────┤
       │Interface Stability	     │Committed			   │
       ├─────────────────────────────┼─────────────────────────────┤
       │MT-Level		     │MT-Safe			   │
       └─────────────────────────────┴─────────────────────────────┘

SEE ALSO
       mlib_SignalDTWKVectorInit_F32(3MLIB), mlib_SignalDTWKVector_F32(3MLIB),
       mlib_SignalDTWKVectorPath_F32(3MLIB),		mlib_SignalDTWKVector‐
       Free_F32(3MLIB), attributes(5)

SunOS 5.10			  23 May 2007 mlib_SignalDTWKVector_F32(3MLIB)
[top]

List of man pages available for SunOS

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net