ZGMBV man page on IRIX

Man page or keyword search:  
man Server   31559 pages
apropos Keyword Search (all sections)
Output format
IRIX logo
[printable version]



SGBMV(3S)							     SGBMV(3S)

NAME
     SGBMV, DGBMV, CGBMV, ZGMBV - Multiplies a real or complex vector by a
     real or complex general band matrix

SYNOPSIS
     Single precision

	  Fortran:
	       CALL SGBMV (trans, m, n, kl, ku, alpha, a, lda, x, incx, beta,
	       y, incy)

	  C/C++:
	       #include <scsl_blas.h>
	       void sgbmv(char *transa, int m, int n, int kl, int ku, float
	       alpha, float *a, int lda, float *x, int incx, float beta, float
	       *y, int incy);

     Double precision

	  Fortran:
	       CALL DGBMV (trans, m, n, kl, ku, alpha, a, lda, x, incx, beta,
	       y, incy)

	  C/C++:
	       #include <scsl_blas.h>
	       void dgbmv(char *transa, int m, int n, int kl, int ku, double
	       alpha, double *a, int lda, double *x, int incx, double beta,
	       double *y, int incy);

     Single precision complex

	  Fortran:
	       CALL CGBMV (trans, m, n, kl, ku, alpha, a, lda, x, incx, beta,
	       y, incy)

	  C/C++:
	       #include <scsl_blas.h>
	       void cgbmv(char *transa, int m, int n, int kl, int ku,
	       scsl_complex *alpha, scsl_complex *a, int lda, scsl_complex *x,
	       int incx, scsl_complex *beta, scsl_complex *y, int incy);

	  C++ STL:
	       #include <complex.h>
	       #include <scsl_blas.h>
	       void cgbmv(char *transa, int m, int n, int kl, int ku,
	       complex<float> *alpha, complex<float> *a, int lda,
	       complex<float> *x, int incx, complex<float> *beta,
	       complex<float> *y, int incy);

     Double precision complex

									Page 1

SGBMV(3S)							     SGBMV(3S)

	  Fortran:
	       CALL ZGBMV (trans, m, n, kl, ku, alpha, a, lda, x, incx, beta,
	       y, incy)

	  C/C++:
	       #include <scsl_blas.h>
	       void zgbmv(char *transa, int m, int n, int kl, int ku,
	       scsl_zomplex *alpha, scsl_zomplex *a, int lda, scsl_zomplex *x,
	       int incx, scsl_zomplex *beta, scsl_zomplex *y, int incy);

	  C++ STL:
	       #include <complex.h>
	       #include <scsl_blas.h>
	       void zgbmv(char *transa, int m, int n, int kl, int ku,
	       complex<double> *alpha, complex<double> *a, int lda,
	       complex<double> *x, int incx, complex<double> *beta,
	       complex<double> *y, int incy);

IMPLEMENTATION
     These routines are part of the SCSL Scientific Library and can be loaded
     using either the -lscs or the -lscs_mp option.  The -lscs_mp option
     directs the linker to use the multi-processor version of the library.

     When linking to SCSL with -lscs or -lscs_mp, the default integer size is
     4 bytes (32 bits). Another version of SCSL is available in which integers
     are 8 bytes (64 bits).  This version allows the user access to larger
     memory sizes and helps when porting legacy Cray codes.  It can be loaded
     by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
     only one of the two versions; 4-byte integer and 8-byte integer library
     calls cannot be mixed.

     The C and C++ prototypes shown above are appropriate for the 4-byte
     integer version of SCSL. When using the 8-byte integer version, the
     variables of type int become long long and the <scsl_blas_i8.h> header
     file should be included.

DESCRIPTION
     SGBMV and DGBMV multiply a real vector by a real general band matrix.

     CGBMV and ZGBMV multiply a complex vector by a complex general band
     matrix.

     These routines perform one of the following matrix-vector operations:

	  y <-	alpha Ax + beta y

	  y <-	alpha ATx + beta y

	  y <-	alpha AHx + beta y

									Page 2

SGBMV(3S)							     SGBMV(3S)

     where

     *	 alpha and beta are scalars,

     *	 x and y are vectors

     *	 A is an m-by-n band matrix with kl subdiagonals and ku superdiagonals

     *	 AT is the transpose of A

     *	 AH is the conjugate transpose of A

     See the NOTES section of this man page for information about the
     interpretation of the data types described in the following arguments.

     These routines have the following arguments:

     trans     Character.  (input)
	       Specifies the operation to be performed:

	       trans = 'N' or 'n':  y <- alpha Ax + beta y

	       trans = 'T' or 't':  y  <-  alpha ATx + beta y

	       trans = 'C' or 'c':  y <- alpha ATx + beta y (SGBMV, DGBMV)

		      or

	       y  <-  alpha AHx + beta y (CGBMV, ZGBMV)

	       For C/C++, a pointer to this character is passed.

     m	       Integer.	 (input)
	       Specifies the number of rows in matrix A.  m >= 0.

     n	       Integer.	 (input)
	       Specifies the number of columns in the matrix A.	 n >= 0.

     kl	       Integer.	 (input)
	       Specifies the number of subdiagonals of matrix A.  kl >= 0.

     ku	       Integer.	 (input)
	       Specifies the number of superdiagonals of matrix A.  ku >= 0.

     alpha     Scalar alpha.  (input)
	       SGBMV: Single precision.
	       DGBMV: Double precision.
	       CGBMV: Single precision complex.
	       ZGBMV: Double precision complex.

									Page 3

SGBMV(3S)							     SGBMV(3S)

	       For C/C++, a pointer to this scalar is passed when alpha is
	       complex; otherwise, alpha is passed by value.

     a	       Array of dimension (lda, n).  (input)
	       SGBMV: Single precision array.
	       DGBMV: Double precision array.
	       CGBMV: Single precision complex array.
	       ZGBMV: Double precision complex array.

	       Before entry, the leading (kl+ku+1)-by-n part of array a must
	       contain the matrix of coefficients, supplied column-by-column,
	       with the leading diagonal of the matrix in row (ku+1) of the
	       array, the first superdiagonal starting at position 2 in row
	       ku, the first subdiagonal starting at position 1 in row (ku+2),
	       and so on.  Elements in array a that do not correspond to
	       elements in the band matrix (such as the top left ku-by-ku
	       triangle) are not referenced.

	       See the NOTES section for an example of Fortran code that
	       transfers a band matrix from conventional full matrix storage
	       to band storage.

     lda       Integer.	 (input)
	       Specifies the first dimension of a as declared in the calling
	       program.	 lda >= (kl+ku+1).

     x	       Array of dimension 1+(kx-1) * |incx|.  (input)
	       SGBMV: Single precision array.
	       DGBMV: Double precision array.
	       CGBMV: Single precision complex array.
	       ZGBMV: Double precision complex array.
	       Contains the vector x.  When trans = 'N' or 'n', kx is n;
	       otherwise, it is m.

     incx      Integer.	 (input)
	       Specifies the increment for the elements of x.  incx must not
	       be 0.

     beta	Scalar beta.  (input)
	       SGBMV: Single precision.
	       DGBMV: Double precision.
	       CGBMV: Single precision complex.
	       ZGBMV: Double precision complex.
	       When beta is supplied as 0, y need not be set on input.

	       For C/C++, a pointer to this scalar is passed when beta is
	       complex; otherwise, beta is passed by value.

     y	       Array of dimension 1+(ky-1) * |incy|.  (input and output)
	       SGBMV: Single precision array.
	       DGBMV: Double precision array.
	       CGBMV: Single precision complex array.

									Page 4

SGBMV(3S)							     SGBMV(3S)

	       ZGBMV: Double precision complex array.
	       Contains the vector y.  When trans = 'N' or 'n', ky is m;
	       otherwise, it is n.  On exit, the updated vector overwrites
	       array y.

     incy      Integer.	 (input)
	       Specifies the increment for the elements of y.
	       incy must not be 0.

NOTES
     The following program segment transfers a band matrix from conventional
     full matrix storage to band storage:

	      DO 20, J = 1, N
		 K = KU + 1 - J
		 DO 10, I = MAX(1, J - KU), MIN(M, J + KL)
		    A(K + I, J) = MATRIX(I, J)
	  10	CONTINUE
	  20 CONTINUE

     SGBMV, DGBMV, ZGBMV and CGBMV are Level 2 Basic Linear Algebra
     Subprograms (Level 2 BLAS).

     When working backward (incx < 0 or incy < 0), each routine starts at the
     end of the vector and moves backward, as follows:

	  x(1-incx * n-1)), x(1-incx * (n-2)) , ..., x(1)

	  y(1-incy * (n-1)), y(1-incy * (n-2)) , ..., y(1)

   Data Types
     The following data types are described in this documentation:

	  Term Used			Data type

     Fortran:

	  Array dimensioned n		x(n)

	  Array of dimensions (m,n)	x(m,n)

	  Character			CHARACTER

	  Integer			INTEGER (INTEGER*8 for -lscs_i8[_mp])

	  Single precision		REAL

	  Double precision		DOUBLE PRECISION

									Page 5

SGBMV(3S)							     SGBMV(3S)

	  Single precision complex	COMPLEX

	  Double precision complex	DOUBLE COMPLEX

     C/C++:

	  Array dimensioned n		x[n]

	  Array of dimensions (m,n)	x[m*n]

	  Character			char

	  Integer			int (long long for -lscs_i8[_mp])

	  Single precision		float

	  Double precision		double

	  Single precision complex	scsl_complex

	  Double precision complex	scsl_zomplex

     C++ STL:

	  Array dimensioned n		x[n]

	  Array of dimensions (m,n)	x[m*n]

	  Character			char

	  Integer			int (long long for -lscs_i8[_mp])

	  Single precision		float

	  Double precision		double

	  Single precision complex	complex<float>

	  Double precision complex	complex<double>

     Note that you can explicitly declare multidimensional C/C++ arrays
     provided that the array dimensions are swapped with respect to the
     Fortran declaration (e.g., x[n][m] in C/C++ versus x(m,n) in Fortran).
     To avoid a compiler type mismatch error in C++ (or a compiler warning
     message in C), however, the array should be cast to a pointer of the
     appropriate type when passed as an argument to a SCSL routine.

SEE ALSO
     INTRO_SCSL(3S), INTRO_BLAS2(3S)

									Page 6

SGBMV(3S)							     SGBMV(3S)

     INTRO_CBLAS(3S) for information about using the C interface to Fortran 77
     Basic Linear Algebra Subprograms (legacy BLAS) set forth by the Basic
     Linear Algebra Subprograms Technical Forum.

									Page 7

[top]

List of man pages available for IRIX

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net