ACCESS(2) Linux Programmer's Manual ACCESS(2)NAME
access - check real user's permissions for a file
SYNOPSIS
#include <unistd.h>
int access(const char *pathname, int mode);
DESCRIPTIONaccess() checks whether the calling process can access the file path‐
name. If pathname is a symbolic link, it is dereferenced.
The mode specifies the accessibility check(s) to be performed, and is
either the value F_OK, or a mask consisting of the bitwise OR of one or
more of R_OK, W_OK, and X_OK. F_OK tests for the existence of the
file. R_OK, W_OK, and X_OK test whether the file exists and grants
read, write, and execute permissions, respectively.
The check is done using the calling process's real UID and GID, rather
than the effective IDs as is done when actually attempting an operation
(e.g., open(2)) on the file. This allows set-user-ID programs to eas‐
ily determine the invoking user's authority.
If the calling process is privileged (i.e., its real UID is zero), then
an X_OK check is successful for a regular file if execute permission is
enabled for any of the file owner, group, or other.
RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the
file exists), zero is returned. On error (at least one bit in mode
asked for a permission that is denied, or mode is F_OK and the file
does not exist, or some other error occurred), -1 is returned, and
errno is set appropriately.
ERRORSaccess() shall fail if:
EACCES The requested access would be denied to the file, or search per‐
mission is denied for one of the directories in the path prefix
of pathname. (See also path_resolution(7).)
ELOOP Too many symbolic links were encountered in resolving pathname.
ENAMETOOLONG
pathname is too long.
ENOENT A component of pathname does not exist or is a dangling symbolic
link.
ENOTDIR
A component used as a directory in pathname is not, in fact, a
directory.
EROFS Write permission was requested for a file on a read-only file
system.
access() may fail if:
EFAULT pathname points outside your accessible address space.
EINVAL mode was incorrectly specified.
EIO An I/O error occurred.
ENOMEM Insufficient kernel memory was available.
ETXTBSY
Write access was requested to an executable which is being exe‐
cuted.
CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.
NOTES
Warning: Using access() to check if a user is authorized to, for exam‐
ple, open a file before actually doing so using open(2) creates a secu‐
rity hole, because the user might exploit the short time interval
between checking and opening the file to manipulate it. For this rea‐
son, the use of this system call should be avoided. (In the example
just described, a safer alternative would be to temporarily switch the
process's effective user ID to the real ID and then call open(2).)
access() always dereferences symbolic links. If you need to check the
permissions on a symbolic link, use faccessat(2) with the flag AT_SYM‐
LINK_NOFOLLOW.
access() returns an error if any of the access types in mode is denied,
even if some of the other access types in mode are permitted.
If the calling process has appropriate privileges (i.e., is superuser),
POSIX.1-2001 permits an implementation to indicate success for an X_OK
check even if none of the execute file permission bits are set. Linux
does not do this.
A file is accessible only if the permissions on each of the directories
in the path prefix of pathname grant search (i.e., execute) access. If
any directory is inaccessible, then the access() call will fail,
regardless of the permissions on the file itself.
Only access bits are checked, not the file type or contents. There‐
fore, if a directory is found to be writable, it probably means that
files can be created in the directory, and not that the directory can
be written as a file. Similarly, a DOS file may be found to be "exe‐
cutable," but the execve(2) call will still fail.
access() may not work correctly on NFS file systems with UID mapping
enabled, because UID mapping is done on the server and hidden from the
client, which checks permissions. Similar problems can occur to FUSE
mounts.
BUGS
In kernel 2.4 (and earlier) there is some strangeness in the handling
of X_OK tests for superuser. If all categories of execute permission
are disabled for a nondirectory file, then the only access() test that
returns -1 is when mode is specified as just X_OK; if R_OK or W_OK is
also specified in mode, then access() returns 0 for such files. Early
2.6 kernels (up to and including 2.6.3) also behaved in the same way as
kernel 2.4.
In kernels before 2.6.20, access() ignored the effect of the MS_NOEXEC
flag if it was used to mount(2) the underlying file system. Since ker‐
nel 2.6.20, access() honors this flag.
SEE ALSOchmod(2), chown(2), faccessat(2), open(2), setgid(2), setuid(2),
stat(2), euidaccess(3), credentials(7), path_resolution(7)COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A
description of the project, and information about reporting bugs, can
be found at http://www.kernel.org/doc/man-pages/.
Linux 2013-04-16 ACCESS(2)