cheevx man page on YellowDog

Man page or keyword search:  
man Server   18644 pages
apropos Keyword Search (all sections)
Output format
YellowDog logo
[printable version]

CHEEVX(l)			       )			     CHEEVX(l)

NAME
       CHEEVX  - compute selected eigenvalues and, optionally, eigenvectors of
       a complex Hermitian matrix A

SYNOPSIS
       SUBROUTINE CHEEVX( JOBZ, RANGE, UPLO,  N,  A,  LDA,  VL,	 VU,  IL,  IU,
			  ABSTOL,  M,  W,  Z,  LDZ, WORK, LWORK, RWORK, IWORK,
			  IFAIL, INFO )

	   CHARACTER	  JOBZ, RANGE, UPLO

	   INTEGER	  IL, INFO, IU, LDA, LDZ, LWORK, M, N

	   REAL		  ABSTOL, VL, VU

	   INTEGER	  IFAIL( * ), IWORK( * )

	   REAL		  RWORK( * ), W( * )

	   COMPLEX	  A( LDA, * ), WORK( * ), Z( LDZ, * )

PURPOSE
       CHEEVX computes selected eigenvalues and, optionally, eigenvectors of a
       complex	Hermitian  matrix  A.  Eigenvalues  and	 eigenvectors  can  be
       selected by specifying either a range of values or a range  of  indices
       for the desired eigenvalues.

ARGUMENTS
       JOBZ    (input) CHARACTER*1
	       = 'N':  Compute eigenvalues only;
	       = 'V':  Compute eigenvalues and eigenvectors.

       RANGE   (input) CHARACTER*1
	       = 'A': all eigenvalues will be found.
	       =  'V':	all eigenvalues in the half-open interval (VL,VU] will
	       be found.  = 'I': the IL-th through IU-th eigenvalues  will  be
	       found.

       UPLO    (input) CHARACTER*1
	       = 'U':  Upper triangle of A is stored;
	       = 'L':  Lower triangle of A is stored.

       N       (input) INTEGER
	       The order of the matrix A.  N >= 0.

       A       (input/output) COMPLEX array, dimension (LDA, N)
	       On  entry,  the Hermitian matrix A.  If UPLO = 'U', the leading
	       N-by-N upper triangular part of A contains the upper triangular
	       part  of the matrix A.  If UPLO = 'L', the leading N-by-N lower
	       triangular part of A contains the lower triangular part of  the
	       matrix  A.   On	exit,  the lower triangle (if UPLO='L') or the
	       upper triangle (if UPLO='U') of A, including the	 diagonal,  is
	       destroyed.

       LDA     (input) INTEGER
	       The leading dimension of the array A.  LDA >= max(1,N).

       VL      (input) REAL
	       VU	(input)	 REAL If RANGE='V', the lower and upper bounds
	       of the interval to be searched for eigenvalues. VL <  VU.   Not
	       referenced if RANGE = 'A' or 'I'.

       IL      (input) INTEGER
	       IU      (input) INTEGER If RANGE='I', the indices (in ascending
	       order) of the smallest and largest eigenvalues to be  returned.
	       1  <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.  Not
	       referenced if RANGE = 'A' or 'V'.

       ABSTOL  (input) REAL
	       The absolute error tolerance for the eigenvalues.  An  approxi‐
	       mate  eigenvalue is accepted as converged when it is determined
	       to lie in an interval [a,b] of width less than or equal to

	       ABSTOL + EPS *	max( |a|,|b| ) ,

	       where EPS is the machine precision.  If ABSTOL is less than  or
	       equal  to zero, then  EPS*|T|  will be used in its place, where
	       |T| is the 1-norm of the tridiagonal matrix obtained by	reduc‐
	       ing A to tridiagonal form.

	       Eigenvalues will be computed most accurately when ABSTOL is set
	       to twice the underflow threshold 2*SLAMCH('S'), not  zero.   If
	       this  routine  returns with INFO>0, indicating that some eigen‐
	       vectors did not converge, try setting ABSTOL to 2*SLAMCH('S').

	       See "Computing Small Singular  Values  of  Bidiagonal  Matrices
	       with  Guaranteed	 High Relative Accuracy," by Demmel and Kahan,
	       LAPACK Working Note #3.

       M       (output) INTEGER
	       The total number of eigenvalues found.  0 <= M <= N.  If	 RANGE
	       = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

       W       (output) REAL array, dimension (N)
	       On  normal  exit, the first M elements contain the selected ei‐
	       genvalues in ascending order.

       Z       (output) COMPLEX array, dimension (LDZ, max(1,M))
	       If JOBZ = 'V', then if INFO = 0, the first M columns of Z  con‐
	       tain the orthonormal eigenvectors of the matrix A corresponding
	       to the selected eigenvalues, with the i-th column of Z  holding
	       the  eigenvector associated with W(i).  If an eigenvector fails
	       to converge, then that column of Z contains the latest approxi‐
	       mation  to the eigenvector, and the index of the eigenvector is
	       returned in IFAIL.  If JOBZ = 'N', then Z  is  not  referenced.
	       Note:  the  user must ensure that at least max(1,M) columns are
	       supplied in the array Z; if RANGE = 'V', the exact value	 of  M
	       is not known in advance and an upper bound must be used.

       LDZ     (input) INTEGER
	       The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
	       'V', LDZ >= max(1,N).

       WORK    (workspace/output) COMPLEX array, dimension (LWORK)
	       On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

       LWORK   (input) INTEGER
	       The length of the array	WORK.	LWORK  >=  max(1,2*N-1).   For
	       optimal	efficiency,  LWORK >= (NB+1)*N, where NB is the max of
	       the blocksize for CHETRD and for CUNMTR as returned by ILAENV.

	       If LWORK = -1, then a workspace query is assumed;  the  routine
	       only  calculates	 the  optimal  size of the WORK array, returns
	       this value as the first entry of the WORK array, and  no	 error
	       message related to LWORK is issued by XERBLA.

       RWORK   (workspace) REAL array, dimension (7*N)

       IWORK   (workspace) INTEGER array, dimension (5*N)

       IFAIL   (output) INTEGER array, dimension (N)
	       If  JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL
	       are zero.  If INFO > 0, then IFAIL contains the indices of  the
	       eigenvectors  that  failed  to  converge.   If JOBZ = 'N', then
	       IFAIL is not referenced.

       INFO    (output) INTEGER
	       = 0:  successful exit
	       < 0:  if INFO = -i, the i-th argument had an illegal value
	       > 0:  if INFO = i, then	i  eigenvectors	 failed	 to  converge.
	       Their indices are stored in array IFAIL.

LAPACK version 3.0		 15 June 2000			     CHEEVX(l)
[top]

List of man pages available for YellowDog

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net